Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(S)-(+)-1-(2-Bromophenyl)ethanol

Richard J. Staples* \ddagger and Jonathan W. Medley

Harvard University, Department of Chemistry and Chemical Biology, Cambridge, MA 02138, USA
Correspondence e-mail: staples@chemistry.msu.edu

Received 26 October 2007; accepted 14 November 2007
Key indicators: single-crystal X-ray study; $T=193 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.033 ; w R$ factor $=0.080$; data-to-parameter ratio $=22.7$.

The title compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$, crystallizes with two molecules in the asymmetric unit. The structure displays $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding, generating zigzag chains evolving around a screw axis along [100].

Related literature

For literature on related complexes, see: Angiolini et al. (1995); Venkatachalam et al. (2005). For related literature, see: Staples (2001); Staples \& George (2005); Staples \& Huang (2002).

Experimental

Crystal data
$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$
$M_{r}=201.06$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
$a=7.3235$ (6) \AA
$b=11.9440(11) \AA$
$c=19.3583$ (18) A
Data collection
Bruker SMART CCD area-detector diffractometer
Absorption correction: multi-scan (SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.434, T_{\text {max }}=0.680$
$V=1693.3$ (3) \AA^{3}
$Z=8$
Mo $K \alpha$ radiation
$\mu=4.79 \mathrm{~mm}^{-1}$
$T=193$ (2) K
$0.20 \times 0.08 \times 0.08 \mathrm{~mm}$

12365 measured reflections
4195 independent reflections
3420 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.027$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$\Delta \rho_{\text {max }}=0.67 \mathrm{e}^{\AA^{-3}}$
$w R\left(F^{2}\right)=0.080$
$\Delta \rho_{\text {min }}=-0.33$ e \AA^{-3}
$S=1.03$
4195 reflections
185 parameters
Absolute structure: Flack (1983), with 1788 Friedel pairs
Flack parameter: -0.004 (10)

H -atom parameters constrained

Table 1
Hydrogen-bond geometry $\left(\AA,{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $A-\mathrm{H} 1 A \cdots \mathrm{O} 1 B^{\mathrm{i}}$	0.84	1.81	$2.645(3)$	177
O1B-H1B $\cdots \mathrm{O} 1 A^{\text {ii }}$	0.84	1.81	$2.627(3)$	165

Symmetry codes: (i) $x-\frac{1}{2},-y+\frac{3}{2},-z$; (ii) $x+1, y+1, z$.
Data collection: SMART (Bruker, 1997); cell refinement: SAINT (Bruker, 2003); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

The CCD-based X-ray diffractometer at Harvard University was purchased through an NIH grant (1S10RR11937-01).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2123).

References

Angiolini, D., Geppi, M., Marchetti, F., Ruggeri, G. \& Veracini, C. A. (1995). Gazz. Chim. Ital. 125, 17-22.
Bruker (1997). SMART. Version 5.054. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2000). SHELXTL. Version 6.14. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2003). SAINT. Version 6.25. Bruker AXS Inc., Madison, Wisconsin, USA.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1998). SADABS. University of Göttingen, Germany.
Staples, R. J. (2001). Z. Kristallogr. New Cryst. Struct. 216, 311-312.
Staples, R. J. \& George, S. (2005). Z. Kristallogr. New Cryst. Struct. 220, 383384.

Staples, R. J. \& Huang, V. (2002). Z. Kristallogr. New Cryst. Struct. 217, 554555.

Venkatachalam, T. K., Zheng, Y., Ghosh, S. \& Uckun, F. M. (2005). J. Mol. Struct. 743, 103-115.

[^0]
supplementary materials

(S)-(+)-1-(2-Bromophenyl)ethanol

R. J. Staples and J. W. Medley

Comment

We have been studying the crystallization properties of enantiomeric compounds and their racemic mixtures, as well as the effect of hydrogen bonding on their crystallization behaviour (Staples and Huang, 2002; Staples and George, 2005). In particular we are interested in those compounds that can act as ligands to transition metal complexes (Staples, 2001). In the course of this study we have structurally characterized the tittle compound, $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$ (I). We have also crystallized the enantiomeric compound, R-(-)-2-bromo-alpha-methyl benzylalcohol, which will be reported later.
S-(+)-2-bromo-alpha-methyl benzylalcohol crystallizes with two molecules in the assymmetric unit and presents intermolecular hydrogen bonding, a fact which can dictate the crystallization as well as solvation properties. It is our hope that we can use this compound for further studies of crystallization and coordination chemistry.

The stucture of $S-(+)$-2-bromo-alpha-methyl benzylalcohol is shown in Fgure 1. The compound exhibits standard bond lengths and angles, similar to those in closely related compounds (Angiolini et al., 1995; Venkatachalam et al.,2005). It displays hydrogen bonding interactions with neighboring molecules (Table 1), to form a linear type of hydrogen bonding structure (Figure 2). The outcome is a zigzag chain structure containing both unique molecules and evolving around a screw axis along [100].

Experimental

The title compound was purchased from Aldrich and the crystals were grown by a slow evaporation of a dichloromethane solution.

Refinement

All H atoms were found by difference Fourier methods and refined isotropically.

Figures

Fig. 1. Thermal ellipsoid plot (50\% probability) of the title compound.

supplementary materials

Fig. 2. Packing diagram of the title compund showing the linear hydrogen bonding interaction.

(S)-(+)-1-(2-Bromophenyl)ethanol

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{BrO}$
$M_{r}=201.06$
Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Hall symbol: P 2ac 2ab
$a=7.3235$ (6) \AA
$b=11.9440(11) \AA$
$c=19.3583(18) \AA$
$V=1693.3(3) \AA^{3}$
$Z=8$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: normal-focus sealed tube
Monochromator: graphite
$T=193$ (2) K
phi and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1998)
$T_{\text {min }}=0.434, T_{\text {max }}=0.680$
12365 measured reflections

Refinement

Refinement on F^{2}
Least-squares matrix: full
$F_{000}=800$
$D_{\mathrm{x}}=1.577 \mathrm{Mg} \mathrm{m}^{-3}$
Mo K α radiation
$\lambda=0.71073 \AA$
Cell parameters from 3839 reflections
$\theta=3.0-23.9^{\circ}$
$\mu=4.79 \mathrm{~mm}^{-1}$
$T=193$ (2) K
Needle, white
$0.20 \times 0.08 \times 0.08 \mathrm{~mm}$

4195 independent reflections
3420 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.027$
$\theta_{\text {max }}=28.3^{\circ}$
$\theta_{\text {min }}=2.0^{\circ}$
$h=-7 \rightarrow 9$
$k=-15 \rightarrow 12$
$l=-25 \rightarrow 21$

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.033$
$w R\left(F^{2}\right)=0.080$
$S=1.03$
4195 reflections
185 parameters
Primary atom site location: structure-invariant direct

methods

Secondary atom site location: difference Fourier map Flack parameter: - 0.004 (10)

Special details

Experimental. Data was collected using a BRUKER SMART CCD (charge coupled device) based diffractometer equipped with an Oxford low-temperature apparatus operating at 193 K . A suitable crystal was chosen and mounted on a glass fiber using grease. Data were measured using omega scans of 0.3° per frame for 30 s , such that a hemisphere was collected. A total of 1271 frames were collected with a final resolution of $0.76 \AA$. The first 50 frames were recollected at the end of data collection to monitor for decay. Cell parameters were retrieved using SMART software and refined using SAINT on all observed reflections. Data reduction was performed using the SAINT software which corrects for Lp and decay. The structures are solved by the direct method using the SHELX90 program and refined by least squares method on F2 SHELXL93, incorporated in SHELXTL V6.1.
Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F , with F set to zero for negative F^{2}. The threshold expression of $\mathrm{F}^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} / U_{\text {eq }}$
Br1A	$0.13612(6)$	$0.57908(3)$	$0.20047(2)$	$0.07072(14)$
O1A	$0.0096(3)$	$0.29862(17)$	$0.05433(10)$	$0.0494(5)$
H1A	0.1035	0.3182	0.0326	0.074^{*}
C1A	$0.2226(4)$	$0.4285(2)$	$0.20561(15)$	$0.0458(7)$
C2A	$0.1479(4)$	$0.3466(2)$	$0.16427(14)$	$0.0403(6)$
C3A	$0.2190(5)$	$0.2392(3)$	$0.17111(16)$	$0.0553(8)$
H3A	0.1718	0.1807	0.1431	0.066^{*}
C4A	$0.3564(5)$	$0.2154(4)$	$0.2175(2)$	$0.0701(10)$
H4A	0.4020	0.1413	0.2217	0.084^{*}
C5A	$0.4272(5)$	$0.3004(4)$	$0.25806(19)$	$0.0675(10)$
H5A	0.5222	0.2843	0.2900	0.081^{*}
C6A	$0.3622(4)$	$0.4066(3)$	$0.25272(17)$	$0.0606(9)$
H6A	0.4110	0.4649	0.2806	0.073^{*}
C7A	$-0.0089(4)$	$0.3657(2)$	$0.11472(14)$	$0.0414(6)$
H7A	-0.0110	0.4464	0.1010	0.050^{*}

C8A	$-0.1898(4)$	$0.3363(3)$	$0.14870(16)$	$0.0518(7)$
H8A1	-0.2888	0.3447	0.1151	0.078^{*}
H8A2	-0.2112	0.3864	0.1879	0.078^{*}
H8A3	-0.1859	0.2586	0.1650	0.078^{*}
Br1B	$1.09635(5)$	$0.88973(3)$	$0.153281(17)$	$0.06112(12)$
O1B	$0.8026(3)$	$1.13185(16)$	$0.01304(11)$	$0.0500(5)$
H1B	0.8822	1.1806	0.0214	0.075^{*}
C1B	$1.1100(4)$	$0.8977(2)$	$0.05449(14)$	$0.0407(6)$
C2B	$0.9897(4)$	$0.9647(2)$	$0.01929(14)$	$0.0380(6)$
C3B	$1.0055(5)$	$0.9659(3)$	$-0.05293(15)$	$0.0493(7)$
H3B	0.9253	1.0111	-0.0796	0.059^{*}
C4B	$1.1372(5)$	$0.9016(3)$	$-0.08555(18)$	$0.0623(9)$
H4B	1.1466	0.9031	-0.1345	0.075^{*}
C5B	$1.2543(5)$	$0.8358(3)$	$-0.0479(2)$	$0.0618(9)$
H5B	1.3445	0.7924	-0.0709	0.074^{*}
C6B	$1.2412(4)$	$0.8325(3)$	$0.02258(19)$	$0.0525(8)$
H6B	1.3206	0.7865	0.0490	0.063^{*}
C7B	$0.8394(4)$	$1.0340(2)$	$0.05289(14)$	$0.0405(6)$
H7B	0.8787	1.0565	0.1004	0.049^{*}
C8B	$0.6624(4)$	$0.9675(3)$	$0.05759(18)$	$0.0536(8)$
H8B1	0.5701	1.0119	0.0820	0.080^{*}
H8B2	0.6844	0.8976	0.0828	0.080^{*}
H8B3	0.6186	0.9501	0.0110	0.080^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1A	$0.0939(3)$	$0.04272(17)$	$0.0756(2)$	$-0.00522(18)$	$0.0009(2)$	$-0.01741(16)$
O1A	$0.0535(13)$	$0.0491(11)$	$0.0457(11)$	$-0.0190(10)$	$0.0097(9)$	$-0.0088(9)$
C1A	$0.0491(17)$	$0.0454(15)$	$0.0431(15)$	$-0.0093(13)$	$0.0102(13)$	$0.0011(13)$
C2A	$0.0390(14)$	$0.0387(13)$	$0.0433(15)$	$-0.0040(12)$	$0.0092(11)$	$0.0043(11)$
C3A	$0.0552(19)$	$0.0476(18)$	$0.063(2)$	$0.0002(15)$	$-0.0012(15)$	$0.0025(14)$
C4A	$0.055(2)$	$0.071(2)$	$0.084(2)$	$0.0115(18)$	$0.0002(19)$	$0.021(2)$
C5A	$0.0398(19)$	$0.095(3)$	$0.068(2)$	$-0.0068(19)$	$-0.0046(16)$	$0.023(2)$
C6A	$0.050(2)$	$0.079(3)$	$0.0525(18)$	$-0.0225(19)$	$-0.0002(14)$	$0.0029(16)$
C7A	$0.0470(16)$	$0.0328(13)$	$0.0443(15)$	$-0.0035(12)$	$0.0025(12)$	$0.0024(11)$
C8A	$0.0457(16)$	$0.0612(19)$	$0.0484(16)$	$0.0059(14)$	$0.0041(14)$	$0.0050(15)$
Br1B	$0.0701(2)$	$0.0615(2)$	$0.05172(18)$	$0.01563(17)$	$-0.01687(16)$	$0.00621(14)$
O1B	$0.0485(11)$	$0.0327(10)$	$0.0688(13)$	$-0.0017(9)$	$-0.0228(10)$	$0.0000(9)$
C1B	$0.0397(14)$	$0.0333(13)$	$0.0492(14)$	$-0.0042(12)$	$-0.0054(11)$	$0.0005(11)$
C2B	$0.0382(14)$	$0.0275(12)$	$0.0483(16)$	$-0.0059(11)$	$-0.0018(12)$	$-0.0021(11)$
C3B	$0.0575(19)$	$0.0418(15)$	$0.0484(17)$	$-0.0085(15)$	$-0.0027(14)$	$0.0026(12)$
C4B	$0.074(2)$	$0.056(2)$	$0.0568(18)$	$-0.0197(19)$	$0.0196(16)$	$-0.0120(15)$
C5B	$0.057(2)$	$0.0431(17)$	$0.085(3)$	$-0.0043(17)$	$0.0241(19)$	$-0.0118(17)$
C6B	$0.0377(16)$	$0.0399(16)$	$0.080(2)$	$0.0003(13)$	$0.0012(15)$	$-0.0017(15)$
C7B	$0.0416(15)$	$0.0359(13)$	$0.0440(15)$	$0.0019(13)$	$-0.0105(12)$	$0.0015(11)$
C8B	$0.0430(17)$	$0.0472(16)$	$0.071(2)$	$0.0004(15)$	$0.0005(15)$	$0.0032(15)$

sup-4

Geometric parameters $\left({ }_{A},^{\circ}\right)$

Br1A-C1A	1.909 (3)	Br1B-C1B	1.917 (3)
O1A-C7A	1.424 (3)	O1B-C7B	1.426 (3)
O1A-H1A	0.8400	O1B-H1B	0.8400
C1A-C2A	1.378 (4)	C1B-C2B	1.370 (4)
C1A-C6A	1.395 (4)	C1B-C6B	1.383 (4)
C2A-C3A	1.391 (4)	C2B-C3B	1.403 (4)
C2A-C7A	1.514 (4)	C2B-C7B	1.523 (4)
C3A-C4A	1.378 (5)	C3B-C4B	1.385 (5)
C3A-H3A	0.9500	C3B-H3B	0.9500
C4A-C5A	1.384 (6)	C4B-C5B	1.373 (5)
C4A-H4A	0.9500	C4B-H4B	0.9500
C5A-C6A	1.359 (6)	C5B-C6B	1.369 (5)
C5A-H5A	0.9500	C5B-H5B	0.9500
C6A-H6A	0.9500	C6B-H6B	0.9500
C7A-C8A	1.520 (4)	C7B-C8B	1.523 (4)
C7A-H7A	1.0000	C7B-H7B	1.0000
C8A-H8A1	0.9800	C8B-H8B1	0.9800
C8A-H8A2	0.9800	C8B-H8B2	0.9800
C8A-H8A3	0.9800	C8B-H8B3	0.9800
C7A-01A-H1A	109.5	C7B-O1B-H1B	109.5
C2A-C1A-C6A	122.5 (3)	C2B-C1B-C6B	123.6 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{Br} 1 \mathrm{~A}$	120.5 (2)	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 1 \mathrm{~B}-\mathrm{Br} 1 \mathrm{~B}$	119.4 (2)
C6A-C1A-Br1A	117.0 (2)	C6B-C1B-Br1B	117.0 (2)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	116.8 (3)	$\mathrm{C} 1 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}$	116.7 (3)
C1A-C2A-C7A	124.2 (3)	C1B-C2B-C7B	124.7 (3)
C3A-C2A-C7A	118.9 (3)	C3B-C2B-C7B	118.6 (3)
$\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}$	121.7 (3)	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{C} 2 \mathrm{~B}$	120.4 (3)
C4A-C3A-H3A	119.2	$\mathrm{C} 4 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	119.8
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{H} 3 \mathrm{~A}$	119.2	$\mathrm{C} 2 \mathrm{~B}-\mathrm{C} 3 \mathrm{~B}-\mathrm{H} 3 \mathrm{~B}$	119.8
$\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	119.5 (4)	C5B-C4B-C3B	120.7 (3)
C3A-C4A-H4A	120.3	C5B-C4B-H4B	119.6
C5A-C4A-H4A	120.3	C3B-C4B-H4B	119.6
C6A-C5A-C4A	120.7 (3)	C6B-C5B-C4B	120.1 (3)
C6A-C5A-H5A	119.6	C6B-C5B-H5B	120.0
C4A-C5A-H5A	119.6	C4B-C5B-H5B	120.0
C5A-C6A-C1A	118.8 (3)	C5B-C6B-C1B	118.5 (3)
C5A-C6A-H6A	120.6	C5B-C6B-H6B	120.7
C1A-C6A-H6A	120.6	C1B-C6B-H6B	120.7
O1A-C7A-C2A	111.3 (2)	O1B-C7B-C8B	107.4 (2)
01A-C7A-C8A	107.9 (2)	O1B-C7B-C2B	110.6 (2)
C2A-C7A-C8A	110.6 (2)	C8B-C7B-C2B	110.9 (2)
O1A-C7A-H7A	109.0	O1B-C7B-H7B	109.3
C2A-C7A-H7A	109.0	C8B-C7B-H7B	109.3
C8A-C7A-H7A	109.0	C2B-C7B-H7B	109.3
C7A-C8A-H8A1	109.5	C7B-C8B-H8B1	109.5
C7A-C8A-H8A2	109.5	C7B-C8B-H8B2	109.5

supplementary materials

H8A1-C8A-H8A2	109.5
C7A-C8A-H8A3	109.5
H8A1-C8A-H8A3	109.5
H8A2-C8A-H8A3	109.5
C6A-C1A-C2A-C3A	-0.4 (4)
$\mathrm{Br} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}$	179.8 (2)
C6A-C1A-C2A-C7A	177.3 (3)
$\mathrm{Br} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 7 \mathrm{~A}$	-2.5 (4)
$\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}$	0.7 (4)
C7A-C2A-C3A-C4A	-177.1 (3)
$\mathrm{C} 2 \mathrm{~A}-\mathrm{C} 3 \mathrm{~A}-\mathrm{C} 4 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	-0.7 (5)
C3A-C4A-C5A-C6A	0.3 (6)
C4A-C5A-C6A-C1A	0.0 (5)
C2A-C1A-C6A-C5A	0.0 (5)
$\mathrm{Br} 1 \mathrm{~A}-\mathrm{C} 1 \mathrm{~A}-\mathrm{C} 6 \mathrm{~A}-\mathrm{C} 5 \mathrm{~A}$	179.8 (3)
C1A-C2A-C7A-O1A	145.5 (3)
C3A-C2A-C7A-O1A	-36.9 (3)
C1A-C2A-C7A-C8A	-94.5 (3)
C3A-C2A-C7A-C8A	83.1 (3)

H8B1-C8B-H8B2	109.5
C7B-C8B-H8B3	109.5
H8B1-C8B-H8B3	109.5
H8B2-C8B-H8B3	109.5
C6B-C1B-C2B-C3B	$-0.6(4)$
Br1B-C1B-C2B-C3B	$-179.3(2)$
C6B-C1B-C2B-C7B	$177.6(3)$
Br1B-C1B-C2B-C7B	$-1.1(4)$
C1B-C2B-C3B-C4B	$0.1(4)$
C7B-C2B-C3B-C4B	$-178.2(3)$
C2B-C3B-C4B-C5B	$0.0(5)$
C3B-C4B-C5B-C6B	$0.4(5)$
C4B-C5B-C6B-C1B	$-0.8(5)$
C2B-C1B-C6B-C5B	$1.0(4)$
Br1B-C1B-C6B-C5B	$179.7(2)$
C1B-C2B-C7B-O1B	$150.2(2)$
C3B-C2B-C7B-O1B	$-31.6(3)$
C1B-C2B-C7B-C8B	$-90.7(3)$
C3B-C2B-C7B-C8B	$87.5(3)$

Hydrogen-bond geometry ($\AA,^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O}_{1 \mathrm{~A}-\mathrm{H} 1 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}}{ }^{\mathrm{i}}$	0.84	1.81	$2.645(3)$	177
$\mathrm{O} 1 \mathrm{~B}-\mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O}^{\mathrm{ii}}$	0.84	1.81	$2.627(3)$	165

Symmetry codes: (i) $x-1 / 2,-y+3 / 2,-z$; (ii) $x+1, y+1, z$.

Fig. 1

Fig. 2

[^0]: \ddagger Current address: Michigan State University, Department of Chemistry, East Lansing, MI 48824, USA.

